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Abstract—Massive multiple-input–multiple-output (MIMO) has
been regarded as one of the key technologies for fifth-generation
wireless networks, as it can significantly improve both the spec-
tral efficiency and the energy efficiency. The availability of high-
dimensional channel side information (CSI) is critical for its
promised performance gains, but the overhead of acquiring CSI
may potentially deplete the available radio resources. Fortunately,
it has recently been discovered that harnessing various sparsity
structures in massive MIMO channels can lead to significant
overhead reduction, and thus improve the system performance.
This paper presents and discusses the use of sparsity-inspired
CSI acquisition techniques for massive MIMO, as well as the
underlying mathematical theory. Sparsity-inspired approaches for
both frequency-division duplexing and time-division duplexing
massive MIMO systems will be examined and compared from an
overall system perspective, including the design tradeoffs between
the two duplexing modes, computational complexity of acquisition
algorithms, and applicability of sparsity structures. Meanwhile,
some future prospects for research on high-dimensional CSI ac-
quisition to meet practical demands will be identified.

Index Terms—Channel estimation, compressed sensing, massive
multiple-input–multiple-output (MIMO), pilot contamination,
pilot sequences, sparsity, ℓ1 minimization.

I. INTRODUCTION

MASSIVE multiple-input–multiple-output (MIMO) sys-
tems promise to boost spectral efficiency by more than

one order of magnitude [1], [2]. Full benefits of massive MIMO,
however, will never come to fruition without the base stations
(BSs) having adequate channel knowledge, which appears to
be an extremely challenging task [3]. The challenges posed by
MIMO channels of very high dimension are confronted in both
frequency-division duplexing (FDD) and time-division duplex-
ing (TDD) massive MIMO systems. In the FDD mode, both
the pilot-aided training overhead and the feedback overhead for
channel side information (CSI) acquisition grow proportionally
with the BS antenna size. However, the proportion of radio
resources allocated to CSI acquisition is severely restricted by
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the channel coherence period. The situation is made worse in
an environment with high user equipment (UE) mobility.

In view of this, a considerable research effort has been
devoted to TDD massive MIMO by exploiting channel reci-
procity. Although the training overhead for TDD operation
becomes proportional to the number of active UEs rather than
that of BS antennas, the inevitable reuse of the same pilot in
neighboring cells can seriously degrade the quality of obtained
channel knowledge. This is because the channels to UEs in
adjacent cells who share the same pilot will be collectively ac-
quired by the BS. In other words, the desired channel obtained
by the BS will be contaminated by interference channels. Once
this contaminated channel knowledge is utilized for transmit-
ting or receiving data, intercell interference occurs immediately
and hence limits the achievable performance. This problem,
known as pilot contamination, cannot be circumvented simply
by adding more BS antennas.

Several attempts have been made to tackle the challenges
of acquiring high-dimensional CSI in massive MIMO. For
instance, in [4], open-/closed-loop training that utilizes tem-
poral and spatial channel statistics is proposed to reduce the
amount of downlink training overhead. For mitigating pilot
contamination, the optimal design of precoding matrices aimed
at minimizing the square errors caused by pilot reuse has shown
its superiority over linear precoding [5]. Due to the recent ad-
vances in compressed sensing [6], [7], sparse signal processing
has attracted much attention in such high-dimensional settings,
which has also demonstrated its power in CSI acquisition in
terms of reconstructing CSI from a limited number of channel
measurements. Various sparsity structures exhibited by massive
MIMO channels have recently been identified, thereby moti-
vating the development of new strategies for CSI acquisition.
Surprisingly, not only can high training overhead be reduced,
but pilot contamination can be also resolved by appealing to
sparsity-inspired approaches.

In this paper, we provide a comprehensive overview of the
state-of-the-art research on sparsity-inspired approaches for
high-dimensional CSI acquisition. In Section II, the challenges
in FDD and TDD massive MIMO are reviewed in detail, includ-
ing a rarely mentioned issue of FDD pilot contamination. On
the basis of different sparsity structures, a variety of methods
for either achieving overhead reduction or alleviating the effects
of pilot reuse are examined and compared in Section III. Finally,
concluding remarks are made in Section IV.

Notations: C denotes complex number, ℜ denotes real part,
∥ · ∥p denotes p-norm, (·)′ denotes transpose, (·)H denotes
Hermitian transpose, IN denotes N × N identity matrix,
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Fig. 1. Pilot reuse in multiple cells. (a) FDD downlink training. (b) TDD uplink training.

N (·, ·) denotes normal distribution, E[·] denotes expectation, 0
denotes zero vector, card(·) denotes cardinality, supp(·) denotes
the set of indices of nonzero elements, Var(·) denotes vari-
ance, max{·} denotes the maximum element, Vec(·) denotes
vectorization, ⊗ denotes Kronecker product, ≽ denotes matrix
inequality, and (·)† denotes pseudoinverse.

II. CHALLENGES OF HIGH-DIMENSIONAL

CSI ACQUISITION

In massive MIMO systems with high-dimensional channels,
CSI acquisition at BSs is a fundamentally challenging problem.
In FDD massive MIMO, performing this task consumes a
considerable amount of radio resources, which is proportional
to the dimension of channels. On the other hand, in TDD-mode
operation, it is hard to ensure the orthogonality of pilot se-
quences in the multicell scenario as the number of overall UEs
becomes large. As a result, the inevitable reuse of correlated
pilot sequences in different cells, known as pilot contamination,
causes capacity-limiting intercell interference.

To illustrate these difficulties further, we will consider a
massive MIMO network consisting of L hexagonal cells. In
each cell, there is a BS equipped with an M -element linear
array,1 serving K single-antenna UEs. The channel between BS
i and UE k in cell j is denoted by the M × 1 vector hi,j,k. The
BS antenna size is supposed to be greatly larger than the number
of served UEs.

A. FDD Massive MIMO

In the FDD mode, obtaining CSI at BSs is normally per-
formed in two steps. First, each BS sends a downlink training
matrix to its served UEs. Second, each UE estimates the desired
channel based on the downlink measurements and feeds back
acquired CSI through dedicated uplink feedback channels.

During downlink training, UE k in cell i receives channel
measurements

yDL
i,k = SDL

i hi,i,k +
∑

l ̸=i

SDL
l hl,i,k + zDL

i,k (1)

1For simplicity, the assumption of employing linear arrays is made. However,
most of the results discussed in this paper can be generalized to include the
cases of using planar or cylindrical arrays.

where SDL
l denotes the N × M pilot training matrix used in

cell l, zDL
i,k is the additive noise, whereas the first term of the

right-hand side (RHS) represents the desired channel measure-
ments, and the next term results from intercell interference.
Even without considering the impact of intercell interference,
the required training overhead N for conventional least squares
(LS) or minimum mean square error (MMSE) estimators to
achieve a reasonable performance level still scales linearly
with the BS antenna size. By taking intercell interference into
account, a further increase in training overhead would occur.
The explicit expressions of the optimal pilot training matrices
(N ≥ M ) are provided in [8] for single-cell networks. In [9],
the optimal design of training matrices for multicell MIMO-
OFDM systems is considered.

What makes the situation worse is that typical feedback
channels are finite rate. This implies that only quantized ver-
sions of channel estimates can be fed back to BSs. If there
are predefined codebooks consisting of precoding vectors, then
the index of the optimal codebook vector is required to be sent
back [10], [11]. However, either the amount of quantized CSI or
the size of codebooks increases in proportion to the number of
BS antennas, and it, in turn, makes these two limited feedback
techniques impractical in FDD massive MIMO.

Note that, when the same training matrix is repeatedly used
in multiple cells, i.e., SDL

1 = · · · = SDL
L , this can be regarded

as pilot contamination in FDD massive MIMO. As a result of
such contamination, as shown in Fig. 1(a), BS i will acquire the
composite channel

∑L
l=1 hl,i,k rather than the desired channel

hi,i,k , given the feedback channel being error free and the
additive noise being ignored. Despite this fact, utilizing this
composite CSI to form a precoding vector and transmit signals
at BS i will not cause serious interference to UEs in the neigh-
boring cells. For instance, given that maximum ratio transmis-
sion (MRT) precoding is employed, the transmitted signal from
BS i can be expressed as xi =

∑K
k=1 wFDD

i,k xi,k , where xi,k

is the signal intended for UE k within the cell, and wFDD
i,k =

∑L
l=1 (hH

l,i,k)
′ denotes the MRT precoding vector. During the

downlink transmission phase, the received interference at UE
m in cell j due to BS i is given by

Ii,j,m = h′
i,j,mxi =

K∑

k=1

L∑

l=1

hH
l,i,khi,j,mxi,k. (2)
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When the number of BS antennas grows without limit, the chan-
nel vectors are asymptotically orthogonal. Thus, the channel
products hH

l,i,khi,j,m approach zero and so does the interference
Ii,j,m. In other words, intercell interference caused by pilot
contamination diminishes asymptotically with increasing BS
antenna size. This implies that there is no need to mitigate
intercell interference by making training matrices distinct from
each other in the asymptotic regime. Hence, the existing liter-
ature rarely addresses the issue of pilot contamination in FDD
massive MIMO.

Note that uplink training in the FDD mode is not considered
here. An explanation for this is provided as follows. The uplink
CSI is mainly utilized for data acquisition in a multiple-access
channel, instead of a broadcast channel. This means that more
advanced signal processing techniques, such as blind multiuser
detection, can be applied at the BS side. Thus, pilot-aided
training may not be the best choice, and CSI acquisition is not
necessarily separated from data acquisition.

B. TDD Massive MIMO

Making massive MIMO operate in the TDD mode is a
promising way to circumvent the identified difficulties in the
FDD mode. Owing to channel reciprocity in the TDD mode, the
CSI obtained via uplink training can be utilized for downlink
transmission. More important, the cost of uplink training now
increases linearly with the number of active UEs rather than
that of BS antennas. Typically, for obtaining accurate CSI, it
requires that each UE transmits an orthogonal pilot sequence
to its serving BS. However, the number of available orthogonal
pilot sequences is limited by the ratio of the channel coherence
interval to the channel delay spread [12], which may be small
due to the mobility of UEs or adverse physical environments.
When the number of overall UEs becomes large, the situation
of using nonorthogonal pilot sequences, known as pilot contam-
ination, inevitably arises. A consequence of pilot contamination
is intra- and intercell interference.

During the uplink training phase, the received signal at the
ith BS is given by

YUL
i =

L∑

l=1

SUL
l Hi,l + ZUL

i (3)

where Hi,l = [hi,l,1, . . . ,hi,l,K ]′ consists of channel vectors
from UEs in the lth cell to the ith BS, the columns of SUL

l form
a set of τ × 1 pilot sequences {sl,k}K

k=1, and ZUL
i denotes an

additive noise matrix. To illustrate the case of intercell interfer-
ence, assume that the same set of orthogonal pilot sequences
is reused in each cell, i.e., SUL

1 = · · · = SUL
L and s′l,k1

sl,k2 = 0
for k1 ̸= k2, as shown in Fig. 1(b). Employing the LS estimator
yields the channel estimate

Ĥi,i =
[(

SUL
i

)H
SUL

i

] (
SUL

i

)H
YUL

i

= Hi,i +
∑

l ̸=i

Hi,l +
[(

SUL
i

)H
SUL

i

] (
SUL

i

)H
ZUL

i (4)

Fig. 2. Number (K = 3l) of admissible UEs versus pilot sequence length for
the GWBE, WBE, and FOS schemes, given a fixed SINR requirement pattern,
that is, {γ1∼l = (1/3), γ(l+1)∼2l = 1, γ(2l+1)∼3l = 3} (from [13]).

where the rows of Ĥi,i are given by ĥi,i,k =
∑L

l=1 hi,l,k when
ignoring the noise. During downlink transmission, using esti-
mates ĥi,i,k to form the transmit signal xi =

∑K
k=1 wTDD

i,k xi,k,

where wTDD
i,k =

∑L
l=1 (hH

i,l,k)
′ are MRT precoding vectors,

will cause interference

Ii,j,m = h′
i,j,mxi

= ∥hi,j,m∥2
2xi,m +

∑

k ̸=m
or l ̸=j

hH
i,l,khi,j,mxi,k (5)

to UE m in cell j. Although the second term on the RHS
of (5) decreases with the increasing BS antenna size, the first
term, which does not vanish, makes the received signal-to-
interference-plus-noise ratio (SINR) at UE m in cell j converge
to a limit and becomes the performance limiting factor.

The current investigation into TDD pilot contamination fo-
cuses on its impact on the received SINR or the sum rate
when linear precoders/detectors are applied. However, very
little is known about its impact on the system equipped with
nonlinear precoders/detectors. A recent work [13], [14] has
provided an interesting perspective on the user capacity of pilot-
contaminated massive MIMO, which quantifies the maximum
number of admissible UEs given their own SINR requirements.
As shown in Fig. 2, the user capacity of three schemes2 of joint
pilot design and transmit power allocation is fundamentally
limited by the length of pilot sequences. For further details
about pilot contamination in TDD massive MIMO, the studies
[15] and [16] and the references therein should be consulted.

III. SPARSITY-INSPIRED CSI ACQUISITION

Despite the challenges imposed by the high dimensionality
of channel matrices, a number of research efforts have sought
to address them and have achieved reasonably efficient CSI
acquisition. In particular, sparsity-inspired approaches have
been proved to be powerful tools, as presented in the following.

2The pilot sequences employed in the GWBE, WBE, and FOS schemes
are generalized Welch bound equality (GWBE) sequences, WBE sequences,
and finite orthogonal sequences (FOS), whose correlation among sequences
is either 1 or 0, respectively. The same downlink power allocation, i.e., Pi ∝
γi/(1 + γi), is used in the three schemes.
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A. FDD Massive MIMO

1) Joint CSI Recovery Method: Authors of [17] proposed a
method for low-overhead pilot training in the single-cell sce-
nario, taking advantage of channel sparsity. Provided that a uni-
form linear array with critically spaced antennas is employed at
the BS, the channel hk, where indices of BSs are discarded in
the single-cell scenario, exhibits a sparse representation ha

k in
the angular domain, i.e.,

hk = Uha
k (6)

where U is a discrete Fourier transform (DFT) matrix whose
columns form an angular basis. The cardinality of supp(ha

k)
can be reasonably assumed to be greatly less than M because of
limited local scattering at the BS whose antenna array mounted
higher than surrounding scatterers. Additionally, based on the
results in [18], it has been argued that the channels to UEs are
likely to share a partially common support in the angular do-
main, i.e., ∩K

k=1supp(ha
k) = Ωc. In order to utilize the channel

sparsity and common support property simultaneously, channel
measurements acquired at UEs are fed back to the serving
BS via error-free feedback channels. Hence, a joint channel
recovery problem can be formulated as follows:

min
{hk,∀k}

K∑

k=1

∥∥yDL
k − SDLhk

∥∥2

1

s.t. ∩K
k=1 supp (ha

k) = Ωc. (7)

Using orthogonal matching pursuit (OMP) as a basis, a greedy
algorithm has been proposed to efficiently solve this problem.
The simulation results show that the required training overhead
for this recovery algorithm can be significantly less than that for
the conventional LS estimator. Moreover, the mean square error
performance improves with the increasing cardinality of Ωc.

One major concern about this joint recovery approach is the
underlying assumption of perfect channel measurements being
fed back. As practical feedback channels are rate limited, it
is more reasonable to assume quantized measurements at the
BS. The impact of quantization on the channel recovery perfor-
mance requires further investigation. On the other hand, it has
been suggested that the amount of channel measurements that
is needed at the BS should be adaptively adjusted according to
the sensitivity of the system performance to the CSI inaccuracy
[19]. Furthermore, there has been little quantitative analysis
of the required training overhead against the channel sparsity
level. This quantification is greatly needed as it will help us
measure the actual training overhead reduction that can be
achieved without relying on time-consuming simulations.

2) Weighted ℓ1 Minimization Method: Considering a similar
single-cell scenario, the study in [20] has drawn attention to
utilizing partial support information of sparse massive MIMO
channels, which is a collection of indices of significant entries
of channel vectors in the angular domain. The main advantage
of using partial support information is the possibility of achiev-
ing a remarkable training overhead reduction. Specifically, the
order of the required overhead decreases from O(s log M) to
O(s), where s = card[supp(ha

k)] is the channel sparsity level.

Fig. 3. Phase transition curves of (8) over different values of α given
M = 100, ŝ = 10, zDL

k = 0, and ϵ = 0 (from [20]).

Assume that the partial support information T̂k of channel ha
k

is available at UE k, where card(T̂k) = ŝ, and card[supp(ha
k) ∩

T̂k] is given by ⌊αŝ⌋. The higher the factor α, the higher is
the accuracy level of partial support information. Based on a
weighted ℓ1 minimization framework, the channel recovery is
performed as follows:

min
ĥa

k∈CM

∥∥∥ĥa
k

∥∥∥
1,w

subject to
∥∥∥SDLUĥa

k − yDL
k

∥∥∥
2
≤ ϵ

with wi =

{
1, i ̸∈ T̂k

0, i ∈ T̂k
(8)

where SDL ∈ CN×M is designed to be a Gaussian random ma-
trix of independent complex normal entries, the noise zDL

k is as-
sumed to be upper bounded, i.e., ∥zDL

k ∥2 ≤ ϵ, and ∥ĥa
k∥1,w =

∑M
i=1 wi|ĥa

k[i]|. In the objective function, the entries that are
expected to be zero are weighted more heavily than others.
The results show a significant improvement over the method
without using partial support information when the accuracy
level α exceeds a certain threshold. Moreover, taking a convex
geometry approach, the authors have successfully and precisely
quantified the required training overhead for achieving a certain
percentage of exact recovery. The exact recovery is declared if
∥ĥa

k − ha
k∥2 ≤ 10−4. As shown in Fig. 3, the analytical curves

of α = 0.2 and α = 0.8 can accurately depict the empirical
phase transition curves of 60% exact recovery and 55% exact
recovery, respectively.

Unlike the previous method, here, channel measurements are
not fed back to the BS. In other words, it avoids the assumption
of error-free feedback channels. However, it raises another
issue of storing random matrices at UEs with limited memory.
In addition, performing convex optimization can impose a
stringent computation requirement on UEs without seeking for
low-complexity solutions. Several attempts have been made to
design practical training matrices. In [21], Toeplitz-structured
training matrices, suggested for the realistic implementation,
are shown to perform comparably with Gaussian random matri-
ces and require generating less independent random variables.
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A deterministic approach to the training matrix design is first
considered by appealing to matrix properties such as mutual
coherence [22]. More advanced deterministic training matrices
are developed in [23] to yield higher recovery accuracy. In
the context of FDD massive MIMO, it would be interesting
to invent structurally random or deterministic training matrices
that take partial support information of channels to multiple
UEs into consideration. In addition, the similar concepts of
using prior channel knowledge to lower training overhead can
be found in [4], where spatial and temporal correlations are
harnessed. More study is needed to better understand how to
integrate all the relevant prior knowledge into efficient CSI
acquisition.

B. TDD Massive MIMO

As mentioned in Section II-B, employing uplink training
to obtain high-dimensional downlink CSI results in undesired
pilot contamination, and the following are some efforts to
address this issue.

1) Coordinated MMSE Method: Contradicting conventional
wisdom, it has been shown that it is possible to mitigate pilot
contamination using the linear MMSE estimator [24]. The key
factor in determining the success of MMSE estimation is that
each channel to the UE can be regarded as a linear combination
of finite steering vectors

hi,j,k =
1√
P

P∑

p=1

αi,j,k(p)a [θi,j,k(p)] (9)

where P is the number of paths, αi,j,k(p) are zero-mean path
gains, and a[θi,j,k(p)] denote the steering vectors due to angle
of arrivals (AoAs) θi,j,k(p). Consequently, the rank of the chan-

nel covariance matrix Ri,j,k
∆
= E{hi,j,khH

i,j,k} depends on the
range [θmin

i,j,k, θmax
i,j,k] in which AoAs θi,j,k(p) lie, which typically

turns out to be low. Let us focus on the kth row of (4), i.e.,
ĥi,i,k =

∑L
l=1 hi,l,k + zi,k. Based on it, the desired channel

hi,i,k can be further extracted by the MMSE estimator, i.e.,

ˆ̂hi,i,k = Ri,i,k

(
σ2

zIM +
L∑

l=1

Ri,l,k

)−1

ĥi,i,k (10)

where the covariance matrix of zi,k is assumed to be σ2
zIM .

When the range of AoAs due to interfering UEs that use the
same pilot sequence does not overlap with the AoA range due

to the desired UE, the estimate ˆ̂hi,i,k approaches the desired
hi,i,k as the BS antenna size grows to infinity. This feature
is highly attractive because the dimension of the BS antennas
can be made as large as desired in massive MIMO. Moreover,
the condition of nonoverlapping AoA ranges can be satisfied
if the reused pilot sequence is properly allocated to UEs in
neighboring cells. A heuristic algorithm has been developed
to perform pilot allocation in a coordinated manner. Another
favorable feature of this method recently demonstrated in
[25] is that the asymptotically optimal estimate is obtainable
whether uniform or nonuniform arrays are employed. As a

result, BS antenna arrays are exempt from the requirement of
high calibration accuracy.

The second-order statistics of high-dimensional channels
have been successfully utilized to facilitate robust MMSE chan-
nel estimation under pilot contamination. However, obtaining
channel covariance matrices of high dimension imposes another
challenge to the massive MIMO system. It is interesting to
know if the low rankness can help speed up the acquisition
of channel covariance matrices. Furthermore, it is still un-
known if this covariance-matrix-aware method is sensitive to
the inaccuracy of the second-order statistics. On the other
hand, the information about AoAs actually can be extracted
from statistical channel knowledge prior to commencing the
instantaneous CSI acquisition [26]. In this case, the dimension
of the parameter space of each channel shrinks to P , which
can be significantly less than the original. Most important, this
information could aid BSs in distinguishing between training
signals from UEs using the same pilot.

2) Quadratic SDP Method: It is suggested that a BS should
collect CSI of both the desired links within the cell and interfer-
ence links from its neighboring cells [27]. In other words, the
CSI of interference links should not be regarded as irrelevant
information. From this new angle, the expression (3) can be
recast as

YUL
i = SULHi + ZUL

i (11)

where SUL ∆
= [SUL

1 , . . . ,SUL
L ] and Hi

∆
= [H′

i,1, . . . ,H
′
i,L]′ are

the full CSI of wireless links that should be recovered. Thus,
the currently challenging issue is similar to that in FDD massive
MIMO, i.e., how to reduce the required training overhead.

In the undesirable scattering propagation environments, the
rank of the channel matrix is equal to the number r of the
feasible AoAs θi,j,k(p) in (9), which is greatly less than
max{M, K · L}. Based on this observation, an unclear norm
regularized problem can be formulated as

min
Hi

1

2

∥∥vec
(
YUL

i

)
−Ψvec (Hi)

∥∥2

2
+ γ∥Hi∥F (12)

where Ψ = SUL ⊗ IM , and γ is a regularization factor. The
sole purpose of adopting unclear norm regulation is to minimize
the sum of the matrix’s singular values, thereby achieving rank
minimization. The preceding problem has been further recast as
a quadratic semidefinite programming (SDP) problem, i.e.,

min
v

1

2
vHv −ℜ

{[
vec

(
YUL

i

)]H
v
}

s.t.

[
γIKL vec−1

KL,M(ΨHv)
[
vec−1

KL,M (ΨHv)
]H

γIM

]
≽ 0. (13)

The solution v∗ to this SDP problem determines the estimate of
the channel matrix

H∗
i = vec−1

KL,M

{
Ψ† [vec

(
YUL

i

)
− v∗]} (14)

which can now be obtained efficiently, due to the readily
available polynomial-time SDP solvers.
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TABLE I
COMPARISON OF SPARSITY-INSPIRED CSI ACQUISITION METHODS

In the commencing study of massive MIMO [28], the CSI
of interference links at BSs is viewed as nonessential. This is
because desired links and interference links are asymptotically
orthogonal, and more important, intercell interference can be
proved manageable with the CSI of desired links only. Here,
we offer an explanation why there is a need for acquiring the
CSI of interference links in the poor scattering environments.
Consider that Hi = GiA, where A = [a(φ1), . . . , a(φr)]′ is
an r × M matrix of full row rank with r ≪ min{M, KL} due
to poor scattering, and Gi consists of KL × r independent and
identically distributed zero-mean channel gains. Then, we have
limM→∞ AAH = Ir and

lim
M→∞

HiH
H
i = GiG

H
i ̸∝ IKL (15)

which implies that the correlation among wireless links does
not diminish with the increasing BS antenna size. In such a
situation, it becomes crucial to obtain the full CSI of wireless
links for effective interference management.

3) SBL Method: Sharing the same perspective as the study
[27], the work in [29] also considers acquiring the full CSI of
wireless links and proposes a sparse Bayesian learning (SBL)
method to achieve this goal. SBL was first presented in [30] and
has been proved to outperform some prevailing ℓ1 minimization
algorithms [31]. The SBL method proceeds by first transform-
ing the channel matrix into the angular domain via DFT, as
mentioned in the joint CSI recovery method, i.e., Hi = HiU.
Interestingly, instead of taking advantage of the sparsity in the
angular domain, the sparsity in the UE domain, which has
been empirically shown to exist, is utilized. In other words,
the column vectors of the channel matrix Hi are considered
one by one. As each column vector consists of elements due
to different UEs, the independence among elements can be rea-
sonably assumed. This independence together with the sparsity

in the UE domain leads to an effective Gaussian-mixture (GM)
model, which well describes the joint distributions of the chan-
nel elements. More surprising, empirical results show that there
are only few parameters involved in the GM model that need to
be determined. Therefore, the practical Bayes estimation can be
implemented by evaluating marginal probability density func-
tions via the approximate message passing (AMP) algorithm
[32] and learning GM parameters by means of the expectation-
maximization (EM) algorithm [33]. The numerical results show
that this Bayesian method can achieve a significant reduction in
estimation errors.

The assumption of channel vectors being sparse in the UE
domain may not hold when the UE dimension KL is not large
enough. A possible remedy for this situation is suggested in the
following. First, it is desirable to understand if the GM model is
also applicable for modeling distributions of spare channel vec-
tors in the angular domain. Second, as angular-domain channels
are very likely to consist of a small number of blockwise
nonzero segments resulting from few clusters of scatterers, it
is eminently reasonable to assume some dependence among
angular-domain channel elements. Hence, the distribution of
the channel vector could be a mixture of Gaussian random
vectors, and the original AMP and EM algorithms should be
modified accordingly to this new GM model.

C. Discussion and Comparison

In the previous subsections, several methods for efficient
high-dimensional CSI acquisition have been discussed for mas-
sive MIMO communications. Table I provides a brief summary
of the advantages and disadvantages of these methods. It is
shown in the table that each method utilizes a distinct sparsity
structure. However, all sparsity structures considered in mas-
sive MIMO are based on the observation that angular-domain
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channels are sparse. As a result, the second-order statistics of
massive MIMO channels inherit the sparsity structure, yielding
low-rank channel covariance matrices. In addition, as sparse
channels are collectively examined, it leads to either block-
sparse or low-rank channel matrices. When the UE dimension is
comparable with the channel dimension, sparsity in the angular
domain also results in sparsity in the UE domain. On the basis
of the aforementioned sparsity structures, different sparsity-
inspired methods are developed either to reduce training over-
head or to mitigate pilot contamination.

In FDD massive MIMO, without feeding back channel mea-
surements to the BS side, less sparsity structures are avail-
able for developing efficient CSI acquisition methods. Despite
this limitation, the weighted ℓ1 minimization method shows
that achieving further overhead reduction is feasible if partial
support information can be obtained in advance and properly
harnessed. Interestingly, by enabling the BS to gather perfect
channel measurements from its served UEs, the joint CSI
recovery method offers an effective way of utilizing sparsity
structures across multiple UEs. If the performance superiority
of this method still holds when taking rate-limited feedback
channels into account, it will establish the fact that offloading
CSI acquisition tasks to the BS is feasible and beneficial.

With regard to TDD massive MIMO, uplink training has
more sparsity structures to utilize as high-dimensional channels
are jointly recovered at the BS side. It is worth noting that
only low-rank channel covariance matrices have been used for
pilot decontamination. Other sparsity structures such as low-
rank channel matrices and sparse UE-domain channels have
not been considered for mitigating the effects of pilot reuse. In
this regard, there is still much room for innovation in sparsity-
inspired pilot decontamination. It is also worth noting that
using perfect covariance matrices of both desired channels
and interference channels in the coordinated MMSE method
has drawn criticism [34]. It would be intriguing to assess if
there exist efficient algorithms for learning low-rank covariance
matrices. If such algorithms are developed or identified, they
should be integrated into the coordinated MMSE method.

D. Implementation Issues

Recently, investigators have examined the practical imple-
mentation of compressed-sensing-based algorithms for sparse
channel recovery [35]–[37]. Although the design targets are
channel models in the 3GPP LTE standard, several insights
that have been provided are still valuable and applicable to
realistic implementation of sparse massive MIMO channel
recovery. It has been pointed out that greedy algorithms such
as OMP or matching pursuit (MP) are more desirable from
a hardware perspective. It is because these algorithms require
lower computational complexity and lower numerical precision
when compared with convex relaxation algorithms such as basis
pursuit [36]. The tradeoff between hardware complexity and
denoising performance of three greedy algorithms has been
characterized in [37], and it is indicated that the chip area
overhead required to implement the gradient pursuit algorithm
can be three times larger than MP. The power consumption is
normally proportional to this area overhead. When it comes

to the design of channel recovery algorithms in FDD massive
MIMO, which are typically performed at the UE side, the issue
of hardware complexity should be carefully taken into account.
On the other hand, at the BS side, high-dimensional channels
can be recovered by more advanced algorithms such as SBL or
joint CSI recovery. To improve the computational efficiency,
recent advances in large-scale convex optimization could be
helpful [38].

E. Implications of New Propagation Models

Most existing studies have based their CSI acquisition ap-
proaches on the conventional MIMO channel models, which
may fail to capture some unique characteristics of massive
MIMO channels. For instance, the far-field and plane wavefront
assumptions no longer hold when antenna arrays become phys-
ically larger than the Rayleigh distance [39]. On the other hand,
the sheer size of antenna arrays, where different antenna ele-
ments observe varying subsets of scatterer clusters, makes the
assumption of spatial channels being wide-sense stationary on
the array axis no longer valid [40]. While new channel models
have been proposed in [41] and [42] by making a more accurate
spherical wavefront assumption and taking the nonstationarities
into consideration, there is still very little understanding of
how these characteristics affect the sparsity structures of the
channels in massive MIMO systems. One previous result [43],
however, suggests that the spherical wavefront model does
adequately characterize the rank of the channel matrix. This
implies that the new channel models can potentially affect the
SDP method, which exploits the sparsity in the form of the
channel matrix rank. In addition, the possibility that none of
clusters are perceptible to some antenna elements cannot be
categorically excluded; thus, it indicates the possible presence
of the sparsity on the array axis. These inferences suggest
that there is abundant room for further progress in identifying
utilizable sparsity structures based on the latest models.

IV. CONCLUSION

In this paper, the challenges of acquiring high-dimensional
CSI in FDD/TDD massive MIMO systems have been dis-
cussed. To address these challenges and break the curse of
dimensionality, one can effectively utilize sparsity structures
that uniquely appear in massive MIMO channels. Several state-
of-the-art sparsity-inspired approaches for high-dimensional
CSI acquisition have been examined and compared in terms
of the sparsity structures being exploited, while their own
advantages and disadvantages are identified. As a result of this
study, the following conclusions can be drawn. The sparsity
structures that can be harnessed are conditional on the radio
propagation environments. In TDD massive MIMO, uplink
training inherently has more sparsity structures to exploit as
high-dimensional channels are jointly recovered at the BS. On
the contrary, in the FDD mode, the desired channel is nor-
mally recovered at the UE where utilizable sparsity structures
are limited. Finally, based upon existing approaches, we have
identified the potential research problems in need of further
investigation.
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